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Errata for "Fluctuations i n  Monatomic Gases" 

by David Montgomery 

1. page 4, last equation before bottom of page; 

replace 6 (G- ('ti)) by 8 ( nT - p% (Ti)), 
2. page 19, beginning with last  new paragraph and continuing 

on through page 20; replace t by everywhere it appears 
(a t o t a l  of nine replacements). 

a 
by 2T a 

a 's2 3. page 21, Equations (22) and (24); replace - 
4. 

5. page 24, Equation (26); replace t by everywhere 

page 21, middle equation should be nunibered ( 2 3 ) .  

(a t o t a l  of nine replacements). 
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ABSTRACT 

W e  treat the problem of calculating distribution-f’unction auto- 
*--+-.) 

correlations of the form ( f(x,v & )f(? 7 ? ) ) for  a d i lu t e  monatomic 

gas. 

for  the plasma case a re  used. 

2 - p l  2 ’ 2 ’ 2  

Two-time probabili ty dis t r ibut ions of the type introduced by Rostoker 

A perturbation expansion i n  the density 

i s  performed on the generalized BBGKY hierarchy which resul ts .  

shown that the problem of determining the fluctuation spectra can be 

reduced t o  solving fo r  a f inct ion which obeys the l inearized kinet ic  

equation for a d i lu te  neutral  gas w i t h  a par t icular  choice of i n i t i a l  

It i s  

conditions, a resu l t  previously obtained by van Leeuwen and yip, 

using diagrammatic perturbation theory. 

wavelengths and hard-sphere interactions, t h i s  equation reduces t o  

the  l inearized Boltzmann equation. 

In the l i m i t  of i n f i n i t e  
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I. INTROIIUCTION 

Scattering from many-particle systems i s  often governed by 

correlation functions referred t o  two points which are separated i n  

time as w e l l  as i n  space. 

experiments one measures the square of some scattered "amplitude" 

S(z,t), where 

1 
For example, i n  a wide c lass  of scattering 

4 - 9  
S(2,t)  = dt I (gl,tl)G(x-x 1' t-tl)n(x" 1' t 1 ), t 1 1  

I.).+ 

I(; , t ) i s  the incident "amplitude", G(x-x ,& t-t ) i s  some 1 1  1 1  

Ir' 1 known Green's function, and n ( 2  t ) i s  the  number density of a volume 

dis t r ibut ion of scat terers .  

scattering volume, and the sdtl over the duration of the incident 

beam of par t ic les  or waves. 

The integration [sl runs over t he  

2 
Exact calculations of S are  usually far too.hard t o  carry 

out, and so one ends up averaging it over an appropiate  ensemble 

of dis t r ibut ions of scatterers.  We shall denote such ensemble averages 

by a bracket ( ). Since I and G are  assumed t o  be the same fo r  a l l  

members of the ensemble, 
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2-4 44 
( S (x, t )  ) = sdj;ldtlJz2dt2 I (2 , t  ) I ( f , t  )G(x-x ,t-t ). 

1 1  2 2  1 1  

It i s  c lear  from t h i s  expression tha t  the quantity of central  

theoret ical  in te res t  i s  the number density auto-correlation 

The calculation of (n(2 t In(; t ) >  for classical  many-particle 1' 1: 2' 2 

systems of point par t ic les ,  i n  turn,  depends upon being able t o  

calculate the auto-correlation of the par t ic le  distribution finction 

f (x, v, t), because 
* *  

where the exact distribution for  N par t ic les  i s  

The average number density i s  no=N/V, V i s  the (a rb i t ra r i ly  large) 

volume occupied by the scatterers, and xi(t) ,vi(t)  i s  the instantaneous 

phase space location of the i- par t ic le  at t i n e  t. 

4 4 

t h  

For thermal equilibrium systems, we must comp-kte (f (1)f (2) ) 
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over an ensemble which i s  the Gibbs distribution. The evaluation of 

t h i s  average for di lu te  monatomic gases i s  the subject of t h i s  paper. 

The same problem was  considered some time ago for  plasmas by 

Rostoker, Dougherty and Farley, Salpeter, and others, Recently, it 

has been considered for  neutral  gases by van LeeUWm and Yip,5 Y i p  and 

Nelkin,6 and Gross7 (for  a comprehensive bibliography, see also Gross 

and Wisnivesky*). 

resolves i t s e l f  in to  the solution of the l inearized version of an 

appropriate k ine t ic  equation. 

In both situations, the calculation of ( f ( l ) f ( 2 )  ) 

The proofs of Rostoker2 and van Leeuwen and Yip5 look as 

dissimilar as BBGKY theory and diagrammatic perturbation theory 

often do. The purpose here is, f i r s t ,  t o  re-cast Rostoker's 

formalism i n  a suff ic ient ly  general way to include other physical 

limits t o  which the BBGKY approach has been successfil ly applied 

t o  compute single-time ensemble averages (for example, the low-density 

l i m i t ,  or weak-coupling l i m i t ) .  Secondly, we then specialize t o  the  

low-density l i m i t ,  and give what ( to  the author, at l e a s t )  appears 

t o  be a more in tu i t ive ly  accessible treatment of the  problem 

of van h@awen and Yip. 

The problem of calculating ( f ( l ) f ( 2 )  ) i s  shown t o  be 

equivalent t o  the  solution of the l inearized version of the kinet ic  

equation for  d i lu te  gases. A s  the  authors remark,5 t h i s  equation i s  
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not qui te  the Boltzmam equation, but reduces t o  it for hard-sphere 

interact ions and long wavelengths. 

BogolyubovB i n  1946 when the equation first appeared i n  a different  

This observation was  a l so  made by 

context. 
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11. THE TWO-TIME BBGKY H I E W C H Y  

For shorthand, we introduce the notation 

as the 6N-dimensional vector which completely specifies the 

phase space location of the N-particle system. 

finding a member of the ensemble a t  X i s  

The probabili ty of 

where 
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The par t ic le  mass i s  m, the  two-particle 

cpij9(\gii-xj I) and 8 i s  the  temperature 

i s  a 6N-fold integration which runs over 

t o  the system. 

4 

Clearly ldXDN=l,  and I& 

energy of interaction i s  

in  energy units.  The rdX 

a l l  the phase space accessible 

s time-independent. 

The jo in t  probabili ty QN introduced by Rostoker i s  the 

probabili ty of finding the system at X at time t and at X' at t i m e  

t f T :  

bN(X, t;X', t+7)"D,(X)s(X'-X(7)). 

X( T) 

motion which passes through X a t  time T = 0. 

X1(~). . .%(T) i s  tha t  solution of the N-particle equations of 

The delta-fbnction i s  

an abbreviation : 

% w i l l  depend on T only, not on the  absolute location of 

t, and i s  normalized so that 

fo r  a l l  7. 

In  terms of %we m y  express the probabili ty of' finding 
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par t ic les  1,2,, .,r a t  5%. . .Xr and par t ic les  1,2,. . .,S at 

5%;. . .Xi, T seconds later, regardless of the  coordinates of the 

other par t ic les  : 

These W-functions play a role  analogous t o  the reduced probability 

distributions of the usual BBGKY theory, g: lo which are  defined 

( for  equilibrium I o r  non-equilibrium) by 

3. f S (XI.. .xs) = v pNdxs+l. * . S 

The W-f'unctions are symmetric under the simultaneous interchanges 

but not under e i ther  interchange separately. 

(beyond those i n  the usual BBGKY theory) as exis t  largely stem f r o m  

t h i s  lack of symmetry. 

Such CmPlexities 
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A N obeys the Liouville equation i n  the primed variables, which 

we write as 

where for  any value of n, 

Primes on functions or aperators w i l l  i n  general indicate tha t  
I 

they are f'unctions of the X rather 

By integrating the Liouville 

i 

I ... %, a chain of equations with a 

of the BBGKY hierarchy results.  In  

than the Xi. 

equation over . and X I 

structure similar t o  tha t  

practice we do not need a l l  

XN s+l 

of these, fo r  it i s  readily shown tha t  
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i s ) -  
and % = %,?b. Here W1,2 I s.(,'.l 12. a' va f o r  any two points Xa = x 

v 
The problem i s  thus reduced t o  get t ing sat isfactory 

approximations t o  W 1,l and w1,12' 
Integrating Eq. (4) over X2.. .X, and Xi+l.. .% gives, upon 

multiplying by V1*', 

L S ' w cx$x;. . . xF,x;+l; T). 

142.. . s si-x 

S 
The operator H 4 i s  defined by Eg. (5 )  and L,' by Li = C 

where 

L; (5 ,  s+l), S i =1 

(We have ignored s / N  compared t o  uni ty  -- T J e m J  we assume the 

"thermodynamic l i m i t "  of N rd 9 V e) 9 M/V = no), Eqs. ( 7 )  

a re  quite similar t o  the usual BBGKY equations. 
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The first t w o  members are: 

and 



The d i lu t e  gas problem now mounts t o  our finding a w e l l -  

behaved perturbation expansion t o  these equations i n  powers of 

the density. Hereafter, we make the formal replacement 

i n  Eqs. (8) and ( g ) ,  l e t t i n g  e -9 1 at the  end, after carrying out the 

expansion i n  GZ 

Any such procedure necessarily leaves open some questions of 

convergence for  the larger  values of s. Similar unsatisfactory 

features ex is t  i n  the ordinary BBGKY theory,I0 ultimately because we 

know very few properties of the solution t o  the  s-body problem. 

questions are swept under the rug i n  the usual theory, and w i l l  be here, 

These 

also. But it i s  not t o  be expected tha t  the procedure given will 

generalize readi ly  t o  a rb i t r a r i l y  high powers of the  density. 
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111. DERIVATION OF THE KINETIC! EQUATION FOR W L1 

In the most abbreviated notation, the problem i s  t o  f ind 

a well-behaved perturbation expansion for  

and 

= "L; w 1,123. 

We shall write 

2 w = w  ( O )  + w 0) + 0 ( €  ) + ... 
1,l 1,l 1,1 

2 
( O )  + e w (1) + 0 ( e  ) +... . w1,12 w1,12 1,12 

- - 

(9) 

We see that the 0 ( e )  re lat ion for W w i l l  involve only W ( 0 )  1,1 1,12' 
We anticipate the (easily ver i f ied)  fac t  that a straight- 

forward expansion i n  e leads t o  "secular", or 7-proportional, 

terms i n  WIJ1, and thus becomes useless for  7 2 0 ( l / e ) .  ( 3 )  



[Rostoker would have found secular terms i f  he had gone t o  the next 

order i n  the expansion of W 

but he did not need to.] 

i n  powers of the plasma parameter, 
1 7 1  

Thus anticipating, we introduce the multiple 

time scale procedure of Friemanll and Sandri12 i n  the form presented 

by the author.1° 

and the terminology. 

We refer  t o  R e f ,  10 for  a discussion of the method 

,v N 

We replace Eqs. (8 ) ,  (9) i n  the "extended domain" by 

The W-functions are understood t o  be f'unctions of the "fast" 

time variable T and the time variable Tl; we need consider 

no others i f  we are content with an 0 ( e )  theory. These correspond 

t o  the usual terminology of " i n i t i a l  stage" and "kinetic stage" l3 

i n  BBGKY jargon. 

0 

The i n i t i a l  conditions t o  be obeyed by the W-functions at 

= 0 are: 



16 

w(x~. . .X ;xf.. .xi; r = 0 )  r 1  
12.. . r , l2. .  . s 

The equilibrium theoryg9lo provides a well-behaved 

e for the  fs. For example, f(O) = (m/2!fle)3s/2 ex& 
S 

expansion in  

(-Es/e). The 

problem i s  to f ind what these i n i t i a l  values evolve in to  as 7 increases 

from zero. 

Substituting Eqs.(lO) in to  (11) and (12) and equating the 

o (1) terms, 

The solution of Eq. (14) i s  



-7 H r  
The properties of the "streaming operators" e are discussed 

many p laces .9~10~13  Essentially they t race  back along the s-body 

t r a j ec to r i e s  To un i t s  i n  time, i n  the  s-particle phase space. 

The 7 dependence i s  not determined at  t h i s  stage; W ("(X -X'*O T) 1 1,l 1' 1' 
can at 'chis point be any function of 7 which reduces t o  Vf(?i)g(X1-X;) 1 

[ f (F') i s  j u s t  a Maxwellian.] I n  the manner character is t ic  1 1  at Tl = 0. 

of the multiple time scale method, we sha l l  choose the 7 dependence 

('1 for large 7 t o  avoid unbounded growth of W 

time evolution of W ( O )  i s  provided only by consideration of the first 

order terms. 

1 
m e  flslowf' (-no7> 

0' 1 7 1  

1,1 

Similarly, W ( O )  (X *X 'X '- T 

applied t o  any function of 7; which reduces t o  

T ) i s  the streaming operator 
-7  H r  1,12 1' 1 2' 0' 1 

e 

Just  as i n  the usual BBGKY theory it has been important t o  approximate 

f$o)(X1X2;0,Tl) correctly in  terms of fp)(X1;O,Tl) i n  order t o  get 

the kinet ic  equation, so here we must approximate W ('1 
i n  terms 

correctly 1,12 
( O )  The obvious choicy i s  

Of wl, 1' 
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-7 IT’ ~~Hi(1) ‘rOl3;(2) (0 )  
= e  O 2e e w 1’1 (x 1’ . x ’ * 7  1’ 0’ T 1 )f 1 (b‘) 2 

terms which 4 0 as T 4 m 

for finite 1 ;;;‘ - 2; I 

Now consider the 0 (e) terms of Eq. (11): 

I 

‘oHr(l) 
Using Eq. (17) , multiplying Lrough by e , ancr noting 

tha t  only O ( 1 )  values of 1 2’ - 2; I contribute to It;, Eq. (18) 

becomes 



which 4 0  a f t e r  a f e w  

uni t s  of To 

To avoid To- proportional terms i n  W at large To, we see 
1,1 

that  we must choose 

~,Hi(l) -T H ' 7 H '(1) T0H;(2) 
+$me L; e 0 2 e 0 1  e wl>l (x 1' ' X ' * T  1' 0 7 1 )f 1 (P). 2 

The content of Eqs. (16) and (20) on the "physical l ine"  

a-a  + E - - -  ' is: 
0 1 a t  - a t o  a *l 

7 = t, = et, where 
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fo r  t 2 a few durations of a two-body collision. 

t o  be sa t i s f ied  by the solution of Eg. (21) i s  clear ly  W ("(t = 0) = 

V6(X1 -X ' ) f  (v"'). This i s  the desired kinet ic  equation. Its 1 1 1  

relat ion t o  the l inearized Boltzmann equation i s  discussed in  the 

The i n i t i a l  condition 

1 9 1  

next section. 
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IV. RIZLATION TO THE LINEARIZED BOLTZMANN EQUATION 

It i s  not yet appaxent t h a t  Eq. (21) i s  the kinet ic  equation fo r  

a d i lu t e  gas. 

present not at ion, 

The equation derived by Bogolyubov 9,13 is, i n  the 

Bogolyubov showedg tha t  fo r  spa t ia l ly  uniform P1 and hard-sphere 

interactions, Eq. (22) reduces t o  Boltzmann's equation. 

proof, see Uhlenbeck and Ford.13) If we l inear ize  Eq. (22) about 

a Maxwellian, writ ing 

(For a clear  

and discarding second-order terms i n  g, we get 
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Comparing Eqs.(24) and (21), we see tha t  t o  prove tha t  W (0 1 
1 7  1 

obeys the l inear ized dilute-= k ine t ic  equation, we must show that 

"he demonstration depends upon a property of e . 
W ( O )  (X ; X ' ; t )  which, while it seems physically obvious, it has 

not been possible t o  prove +igosously d i rec t ly  from Eq. (21). 

must assume tha t  e 

1,l 1 2 
We 

(X,;Xi;t) has a f i a i t e  range of 

values of I < - 2; I over which it can be non-zero. Surely t h i s  

property i s  obeyed at  t = 0, for 

- 8 d  

and i s  non-zero only at value of %-xi. Assume now that the property 

holds for  a l l  f i n i t e  t, and consider the in tegra l  operator L;' Only 
4 4  

points %',xi which are separated by less than the range of the 
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a-rp> 
in te rac t iony  contribute to it. For purposes of Eq. (Pj), e 

j u s t  acts l ike the ident i ty  operator. The operator e t races  back 
-sH; 

a long distance along the two-particle t ra jec tor ies  t o  two points 

q(-s), x;(-c). By vir tue of our assumption, however - x ' ( - s )  w i l l  

l i e  outside the domain where W ('I i s  non-vanishing unless the tracing 

operation leaves us w i t h  $ ( - 5 )  near x 1' 

larger  5, t h i s  leaves us with a narrower and narrower range of so l id  

angle in to  which a given pa i r  of veloci t ies  13' ] , 17; I have t o  be 

i) 

' $*2 

191 
* 

However, for larger  and 

1 

aimed i n  order t o  lead t o  such a configuration. In the l i m i t  of 

4 =J, the set which can contribute t o  sd-;;; i s  measure zero, and 

Eq. ( 2 5 )  follows. 

Note tha t  no similarargument can be constructed for  the non- 

zero term of Eq. (21). 

of X 

For each value of Xi, there always ex is t s  a set  

of f i n i t e  measure over which the whole integrand contributes t o  
1 

Eq. (21). 

The question of the compact non-zero domain of the jo in t  

probabili ty W ('I i s  a sticky one. I n i t i a l l y  it i s  t rue;  but 
1 9 1  

such soluble examples of i n i t i a l l y  singulaz conditional jo in t  

probabili ty functions as exis t  (those from the theory of Brownian 

motion14 are the  only ones known to the author) indicate tha t  what 

may happen i s  that the delta-function a i c h  W ('1 i s  in i t i a l ly ,  

i s  converted instantaneously in to  a function which falls off 
1 7 1  
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exponentially at large separations rather  than going s t r i c t l y  t o  

zero. Such a resu l t  would  also be adequate for  a proof of Eq. (25). 

But u n t i l  much more i s  known about solutions t o  the linearized 

kinet ic  equations than is  now known, the property remains, s t r i c t l y  

speaking, only a plausible physical conjecture. 

Finally, given the solution $0 Eq. -@L$ awd the ..&&n-i-tion of 

we have 'i,27 

-$2/e - 
where G I e - 1 i s  the equilibrium pair  correlation. After a few 

times the duration of a collision, and on the physical line, t h i s  

becomes 

w (@(x ;x';t) = 
1,2 1 2 
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"his re la t ion  i s  similar to van Leeuwen and Yip's Eq.(2.33). 

agree at T = 0. 

disagreement, however, for T > 0. 

"hey 

We have not been able to establish agreement or 
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v. SUMMARY 

We have shown how t o  express the  density-density correlation 

function of a d i lu te  c lass ica l  gas i n  terms of the jo in t  probability 

f’unctions of Rostoker. We have shown how t o  obtain a well-behaved 

density expansion of the hierarchy which these jo in t  probabi l i t ies  

obey. The crucial  f’unction, called Wl,l (O) , turns out t o  obey the 

l inearized d i lu te  gas kinet ic  equation 

i n i t i a l  conditions. For hard-sphere interactions and in f in i t e  wave- 

lengths, t h i s  equation reduce& t o  the l inearized Boltzmann equation. 

(Eq. (21) ) with delta-flmction 

Our conclusions, arrived at by quite different methods, confirm most 

(but not quite a l l )  the conclusions of Van Leeuwen and Yip. 

Other expansions of the hierarchy (e.g., i n  the coupliul_g 

constant or the plasma parameter) w i l l  lead W (O) t o  obey the 

appropriate kinet ic  equation. We have not considered the related problem 

of solving6 the l inearized k ine t ic  equation (Eq. (21)). 

1,1 
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